Srijeda 4 Prosinac 2024

Pretraga

Tajni projekti

Kvantna fizika

03 Srp 2009
(Reading time: 6 - 11 minutes)

Korisnička ocjena: 5 / 5

Zvjezdica aktivnaZvjezdica aktivnaZvjezdica aktivnaZvjezdica aktivnaZvjezdica aktivna
 
kvantna_fizika Tvorac kvantne fizike je Max Planck. 1900. je proučavao spektralne linije, boje topline emitirane iz crnog tijela. Crno tijelo je objekt koji kompletno apsorbira svu toplinsku radijaciju, doseže ravnotežnu temperaturu i zatim ponovno zrači apsorbiranu toplinu. Planck je otkrio nekontinuiranost zračenja energije te zračene topline crnog tijela, koji se odvijao u emisiji jednakih i konačnih provala paketa energije s jasnim frekvencijama. Planck je pretpostavio da su vibracije atoma u crnom tijelu bile izvor radijacije. Diskretne linije energetskog spektra bi se mogle jedino objasniti pobuđenošću atoma u više energetsko stanje zbog apsorpcije topline. Apsorbirana energija se ponovno otpušta zračenjem paketa elektromagnetske energije kada se atomi vraćaju u svoja temeljna stanja. Ti su paketi energije nazvani  kvantima, a energija paketa je proporcionalna frekvenciji zračenja. Planck-ov koncept kvanta energije je bio u sukobu s klasičnom Maxweell-ovom elektromagnetskom teorijom, koja je predviđala kretanje elektromagnetske energije u valovima, poprimajući bilo koje male količine energije, no sigurno ne kvantizirano. Trebali je niz godina dok se utjecaj Planck-ovih otkrića nije konačno prihvatio i shvatio. Planck je očekivao kako će netko drugi naći bolje objašnjenje od njegovih kvanta, no njih je međutim potvrdio Einstein u kvantima zračenja elektromagnetske energije u eksperimentima s fotelektričkim efektom, gdje je svijetlosne kvante nazvao fotonima. Ono što je zapravo Einstein dokazao, je činjenica da se svijetlost sastoji od čestica, fotona. Einstein je za svoj rad na fotoelektričkom efektu dobio Nobelovu nagradu.

1905 je Rutherford otkrio jezgru atoma, a 1913. je Niels Bohr, koji se radio s Rutherford-om, predložio model atoma sličan minijaturnom Sunčevom sustavu u kom elektroni orbitiraju oko jezgre, kao naši planeti oko Sunca. Putanje elektrona oko jezgre su sferični slojevi nazvani elektronskim ljuskama na diskretnim udaljenostima od jezgre. Elektronska ljuska je bila odgovor Bohr-a na otkriće Max Planck-a, zaključivši kako bi atom mogao egzistirati samo s diskretnim skupom stabilnih energetskih stanja (elektrona - op. MK).

Objasnio je kako elektroni mogu samo orbitirati oko jezgre u danim ljuskama, no slobodno mogu kvantno skakati iz jedne ljuske u drugu. Kada elektron skače (kvantni skok) iz više ljuske (ljuske s višom energijom - op. prev)  na nižu ljusku (ljuska s nižom energijom  - op. MK), emitira se foton određene valne dužine (frekvencije - op. prev). Elektron ne putuje prostorom između ljusaka, već samo skače s jedne ljuske na drugu. Bohr je objasnio misterij zašto se elektroni ne sruše u jezgru rekavši kako je nemoguće 'prijeći' najnižu ljusku. Do danas kvantna fizika nije nikada bila u mogućnosti objasniti zašto su elektroni prisiljeni orbitirati u danoj ljusci; odgovor je jednostavan - to je magičnost kvantne fizike!

Louis de Broglie je 1924 postavio pitanje u svojoj doktorskoj dizertaciji ‘Recherches sur la théorie des quanta’ (Istraživanje o kvantnoj teoriji) ne bi li elektroni mogli u stvari biti i valovi? To je bilo uvođenje dualiteta vala-čestice u kvantnu fiziku. De Broglie je predložio kako bi se čestice (elektroni) mogle u jednim slučajevima promatrati kao čvrsti objekti, a u drugim slučajevima kao valovi.

Kvantna je fizika mogla modelirati to čudno dualističko ponašanje materije u konzistentnom matematičkom modelu, međutim nikada nije mogla objasniti zašto se elektron ili foton na primjer ponašaju jedamput kao čestica a u drugoj situaciji kao val. Kada se promatraju elektron ili foton kao čestica, sadržani su u ograničenom prostoru, međutim kada se promatraju kao val, on je svugdje jer se valovi šire u prostoru. Pokušati to zamisliti je potpuno nemoguće! Stoga su nazvali taj val-česticu atomskom materijom wav(e)(part)icles (analogijom bi prijevod bio val(čest)ica) indicirajući njihovu dualističku prirodu.

Kvantna fizika je najčudnija fizika s kojom se suočio ovaj svijet. Otkriveno je kako na razini subatomskih čestica priroda prestaje biti deterministička. Sve do tog vremena Newton-ijanska fizika je pretpostavljala mogućnost određivanja svih svojstava i ponašanja naše fizikalne realnosti, jer je pretpostavljala pokoravanje te realnosti dobro poznatim fizikalnim zakonima bez izuzetaka.

Kvantna je fizika dokazala kako je ta pretpostavka netočna za elementarne čestice, na mikrokozmičkoj razini. Na toj razini se priroda počinje ponašati nejasno i više nije ni u kom slučaju deterministička. Apsolutna sigurnost/izvjesnost o egzaktnom stanju i svojstvima čestice više nije odrediva; moguća je jedino kalkulacija u terminima statističke vjerojatnosti. Taj je princip postao poznat kao Heisenberg-ov princip neizvjesnosti, nazvan po Werner Heisenberg-u.

Izuzetno je važno shvatiti, kako ne-deterministička priroda subatomskih čestica nije uzrokom pomanjkanja točnosti mjernih instrumenata već je ona inherentno svojstvo same prirode. Na kvantnoj razini, elektroni skaču u orbite na višim elektronskim ljuskama s atomima bez ikavog očitog razloga. Kada skaču natrag na svoje osnovno stanje, emitira se foton (elektromagnetska svijetlosna energija). To je ponašanje uočljivo u svim našim elektroničkim uređajima, na primjer elektroničko pojačalo, kao šum. Slučajno ponašanje

prirode na kvantnoj razini je šokirala i zaintrigirala znanstvenike jer su uvijek vjerovali u Newton-ijanski aksiom o  pokoravanju prirode zakonima koji omogućavaju dobro predviđanje. Fizičari moraju sada živjeti s principom neizvjesnosti kvantne fizike. Einstein, koji u to nije mogao vjerovati, je jednom rekao: "Bog se ne kocka"!

Što uzrokuje te kvantne fluktuacije energije na kvantnoj razini, a što onemogućava predviđanje?

Erwin Schrödinger je postavio jednadžbu kako bi odredio ili brzinu (moment) ili točnu lokaciju elektrona u elektronskom oblaku (statističkom oblaku vjerojatnosti - op. prev.), konstatirajući kako se istovremeno ne može odrediti i brzina i lokacija prema principu neizvjesnosti. Znate ili poziciju elektrona a njegova brzina (moment) je neizvjesna ili ste pak odredili njegovu brzinu, no njegova lokacija će onda biti neizvjesna.

Za rješavanje te enigme dualističke prirode valice, čestice koja može biti i čestica i val, kvantni fizičari objašnjavaju taj paradoks, govoreći kako čestica samo imaginarno egzistira kao superpozicija svih mogućnosti. U tom stanju čestica ima distribuciju vjerojatnosti sličnu valu, dok se ne promatra. Čim neki motritelj, u većini slučajeva znanstvenik u svom laboratoriju, mjeri česticu, kvantna stanja čestice kolabiraju. Superpozicija svih mogućnosti, kaže se, kolabira u samo jedno fizikalno stanje prije nego ga motritelj motri. Prije motrenja ona egzistira u transcendentalnom prostoru mogućnosti. Kada se promatra, ona se 'zamrzne' (kao zaustavljena filmska slika - op. prev.) u samo jednoj od svih mogućnosti.

To je postala famozna kopenhaška interpretacija kvantne fizike, koju je predložio Niels Bohr. Kopenhaška interpretacija kaže kako čin svijesnog motrenja motritelja uzrokuje kolabiranje kvantnog vala, kvantnu superpoziciju svih mogućnosti. Dakle prema onom što kvantni fizičari kažu, fizikalni realitet je subjektivan, motritelj igra aktivnu ulogu u onom što priroda manifestira. U kvatnom području subatomskih čestica mi smo ko-kreatori svoje vlastite realnosti!

Einstein je jednom rekao: "Nisam siguran je li mjesec još uvijek tamo kada okrenem glavu". Time je mislio kako kvantna znanost pretpostavlja egzistiranje našeg fizikalnog realiteta samo kada ga se promatra (stanje čestice), a materija se vraća u čisto energetsko stanje kada nitko ne pazi na nju (valno stanje).
Kvantna je fizika značila kraj Newton-ijanske objektivne i kauzalno determinističke realnosti, jer svijesno promatranje znanstvenika igra aktivnu ulogu u fizikalnim motrenjima.

Danas se to znanje počinje koristiti za razvoj tehnologija kvantne enkripcije (šifriranja) za prijenos informacija. Presretanje poruke se može otkriti samim aktom motrenja, a time bi i neautorizirani čitatelj do određene mjere promijenio sadržaj poruke.

Kvantna znanost predviđa postojanje tako zvanog ne-lokalnog učinka. Ne-lokalni učinci su učinci koji se događaju istovremeno između fizikalnih objekata separiranih u prostor-vremenu. U tom slučaju nikakvo vrijeme nije uključeno između uzroka i učinka. To je potpuno protivno teoriji Einstein-a, po kojoj ništa u svemiru ne može prijeći brzinu svijetlosti. Kada je prvi put čuo o predviđanju postojanja ne-lokalnih učinaka kvantne znanosti, nazvao ih je 'sablasnom akcijom na daljinu'. Jednostavno nije u to vjerovao.

U tekstu Einstein, Podolsky i Rosen, objavljenom 1935 oni predlažu tako zvanu Einstein-Podolsky-Rosen (EPR) korelaciju kvantno isprepletenih čestica. Dvije čestice su isprepletene kada su im spregnuta kvantna stanja. Kvantno isprepletene čestice reagiraju kao jedno tijelo, naizgled nerazdvojeno. Kada kvantno stanje jedne čestice kolabira u klasično stanje, to čini i druga kolabirajući u potpuno isto stanje. Da bi se to dogodilo, potrebna je trenutna komunikacija između dviju čestica, drugim riječima, ne-lokalna. U EPR prijedlogu je Einstein pokušao pobiti ne-lokalnost kvantno isprepletenih čestica, tvrdnjom kako kvantna znanost mora biti nekompletna, pa je ponudio i alternativu s 'lokalno skrivenim varijablama'. 1964. je John Bell teorijski dokazao stvarnost ne-lokalnog učinka kvantno isprepletenih čestica, što je postalo poznato kao Bell-ov teorem.

Tako se komunikacija između isprepletenih čestica opet pretpostavila ne-lokalnom, a time i trenutnom. Ako se stanje jedne čestice promijeni, druga reflektira to isto stanje. Inžinjeri IBM-a su 1993. radili na kvantnoj teleportaciji korištenjem kvantne isprepletenosti kao svom kamenu temeljcu. Kvantna teleportacija je

tehnika dematerijalizacije materije na jednoj lokaciji i 'faksiranje - elektroničko prenošenje' u kvantno stanje na drugom mjestu, kako bi se na njemu lokalno materijaliziralo. Iako ne očekujemo scene iz Star Trek znanstvene fantastike u skoroj budućnosti gdje se Scotty-a portira u matični brod US.Enterprise, ostaje činjenica o realnosti fenomena.

Ono na čemu rade IBM istraživači nije stvarna teleportacija same materije, već svojstava njenih kvantnih stanja. Teleportacija je dugo bila smatrana nemogućom jer bi mjerenje, scann-iranje originala prouzročilo kolabiranje kvantnog stanja i tako razorilo original, degradirajući ga na klasično stanje. Međutim, IBM znanstvenici su predložili  trik u kojem se scann-iranje ne događa u potpunom kvantnom stanju, već u pola klasičnom i pola kvantnom stanju, kako se ne bi prekršio kvantni princip neizvjesnosti.

U travnju 2004. BBC vijesti su izvijestile o proboju u kvantnoj teleportaciji, koju su ostvarili istraživači u Austriji. Oni su uspješno portirali kvantno isprepletene fotone na daljinu od 800 m preko Dunava u Beču, korištenjem optičkih vlakana. To je prvi takav događaj kojim je demonstrirana kvantna teleportacija izvan laboratorija.

Kvantna teleportacija je glavna karakteristika razvoja novog super tipa kompjutera koji koristi kvantnu kompjutaciju. Naši postojeći kompjuteri koriste binarna stanja u memoriji nazvana bitovi, za smpremanje podataka. Bit može imati vrijednost ili jedan ili nula. U kvantnoj kompjutaciji klasični su bitovi zamijenjeni s kvantnim bitovima ili qubit-ima. Qubiti, kada su u kvantnom stanju, zauzimaju superopizicijom obje vrijednosti (jedan i nula) u isto vrijeme. Dok su qubiti u kvantnom stanju, odvija se kompjutacija. Kvantna teleportacija se koristi za pomicanje podataka (qubitova) iz jednog mjesta u memoriji u drugo, kao što se to događa i u današnjim kompjuterima. Na kraju kompjutacije kvantna stanja kompjuterske memorije kolabiraju u klasična stanja. Svi qubiti u memoriji će nakon toga imati klasične bit vrijednosti ili jedan ili nula! Prednost kvantnih kompjutera, ako bi se mogli konstruirati, je njihova mogućnost postizanja skoro beskonačnog stupnja paralelnih obrada što će ih učiniti ekstremno učinkovitim i brzim.

Ne-lokalnost i kvantno isprepletanje je postojalo samo u teoriji, sve dok Alan Aspect s Instituta za optiku Sveučilišta u Parizu 1982. nije prvi dokazao istinsko postojanje tih učinaka u svom laboratoriju. Uspio je porizvesti seriju fotona dvojčeka koji su bili slani u suprotnim smjerovima. Kvantno isprepleteni fotoni dvojčeki su putovali u svojim kvantnim stanjima, što znači kako su imali beskonačni broj smjerova spina svi u isto vrijeme kao kvantnu mogućnost. Kada se jedan od fotona presreo i mjerio, kvantno stanje spina fotona je kolabiralo u stanje klasičnog spina, koje se mogleo odrediti. U egzaktno isto vrijeme, dakle s nula vremenskom razlikom, mjeren je drugi foton dvojčeka, koji je kolabirao u potpuno isto klasično stanje spina kao i prvi foton, nezavisno o udaljenosti između dva fotona. Eksperiment je dokazao nužnost ne-lokalne komunikacije između dva fotona, jer kako bi inače drugi foton znao točan spin svog blizanca.

To je otrkiće uzdrmalo znanstvenu zajednicu do srži. Ako su ne-lokalni učinci stvarni, mora postojati ili druga dimenzija hiperprostora, druge fizikalne ravnine postojanja izvan našeg fizikalnog svijeta gdje bi se ta ne-lokalna komunikacija dogodila ili je Einstein-ova pretpostavka o nepostojanju mogućnosti za ne-lokalni učinak u našem svemiru, tj. o nemogućnosti putovanja brzinom veće od brzine svijetlosti, kriva (1)

Nakon Aspect-ovog otkrića, pojavio se fizičar David Bohm sa Sveučilišta u Londonu s kompletno drugačijim objašnjenjem. Ono što vidimo kao dva odvojena fotona je možda iluzija, jer su fotoni sjedinjeni u za sada nepoznatoj razini u jedno. Pretpostavio je holografsku prirodu našeg svemira, objasnivši to prekrasno slijedećom analogijom. Pretpostavimo postojanje kamera kraj akvarija, jedne ispred akvarija, a druge sa strane. Pretpostavimo prikazivanje odvojenih slika dvije kamere koje snimaju plivajuću ribu gledatelju na dva odvojena ekrana. Gledatelj bi mogao zaključiti nakon intenzivnog proučavanja slika s dva ekrana, kako vidi dvije ribe koje plivaju sa sinkroniziranim pokretima (isprepletenim) jer druga riba reflektira svaki pokret prve ribe. Ono što je David Bohm sugerirao s ovom analogijom, je postojanje dublje razine realiteta, gdje dva fotona uopće nisu razdvojena. Predložio je implicitni red u svemiru, jednost na dubljoj razini, koja se raspliće prema van, razdvojenim stvarima. (2)

Implikacije kvantne fizike su ogromne; ona nam pokazuje da smo ko-kreatori svoje vlastite realnosti barem na mikrokozmičkoj razini realiteta, jer motritelj igra ulogu u onom što se promatra. Niels Bohr, suosnivač kvantne znanosti je jednom rekao: "Svatko tko nije šokiran kvantnom fizikom, jednostavno ju ne razumije."

Pružit ćemo obilje dokaza u ovoj knjizi o činjenici da učinak ljudske svijesti u kvantnoj fizici nije ograničen na mikrokozmičku razinu, već je također primijenjiv i na naš makrokozmički svijet. Ljudske misli, emocije i namjere imaju daleko veći učinak na realitet nego se to ikada pretpostavljalo. Kvantna znanost je još uvijek prevladavajuća znanost; ona može objasniti mnoge fizikalne fenomena, izuzev gravitacije!

O autoru
Danijel Folnegović
Author: Danijel FolnegovićWebsite: http://fx-files.comEmail: Ova e-mail adresa je zaštićena od spambota. Potrebno je omogućiti JavaScript da je vidite.
Owner
Danijel Folnegović je oduvijek bio zainteresiran za sve što ima veze s paranormalnim. Zarazio se time tamo davne 1993. gledajući prvu epizodu serije Dosije X. Voli pisati o bilo ćemu zanimljivom od NLO-a, vanzemaljaca, teorija urote, teorije o drevnim vanzemaljcima i nerješenim misterijama. Također, ima strast prema SF serijama i filmovima, ali i nogometu. Pokretač je ove stranice i brine o njenom neometanom radu. Povremeno se pojavljuje kao gost u nekim TV i radio emisijama.
Nedavni članci:

Comments powered by CComment

WMD hosting

wmd dno